Stateoftheart and Future Directions for Robotic Lower Limb Exoskeletons

Abstract

The bones routine movements for elderly people are not easily accessible due to the weak muscles and impaired nerves in their lower extremity. In the last few years, many robotic-based rehabilitation devices, similar orthosis and exoskeletons, have been designed and adult past researchers to provide locomotion assistance to support gait behavior and to perform daily activities for elderly people. Withal, there is still a need for improvement in the design, actuation and control of these devices for making them cost-effective in the worldwide market. In this work, a systematic review is presented on available lower limb orthosis and exoskeleton devices, to appointment. The devices are broadly reviewed co-ordinate to joint types, actuation modes and command strategies. Furthermore, tabular comparisons have also been presented with the types and applications of these devices. Finally, the needful improvements for realizing the efficacy of lower limb rehabilitation devices are discussed forth with the evolution stage. This review will help the designers and researchers to develop an efficient robotic device for the rehabilitation of the lower limb.

References

  1. World report on inability. https://www.who.int/disabilities/world_report/2011/written report/en/

  2. Kapsalyamov A, Jamwal PK, Hussain S, Ghayesh MH (2019) State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access 7:95075–95086

    Article  Google Scholar

  3. Herr H (2009) Exoskeletons and orthoses: classification. Design challenges and futurity. J Neuroeng Rehabil half-dozen:21

    Article  Google Scholar

  4. Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-fine art. IEEE Trans Robot 24(ane):144–158

    Commodity  Google Scholar

  5. Herr H (2009) Exoskeletons and orthoses: nomenclature, design challenges and future directions. J Neuroeng Rehabil 6(one):21

    Article  Google Scholar

  6. Pons JL (2010) Rehabilitation exoskeletal robotics. IEEE Eng Med Biol Magazine 29(three):57–63

    Article  Google Scholar

  7. Kazerooni H, Steger R (2006) The Berkeley lower extremity exoskeleton. J Dyn Syst Meas Contr 128(1):xiv–25

    Commodity  Google Scholar

  8. Guizzo E, Goldstein H (2005) The rise of the body bots [robotic exoskeletons]. IEEE Spectr 42(10):50–56

    Commodity  Google Scholar

  9. Walsh CJ, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Humanoid Robot 4(03):487–506

    Article  Google Scholar

  10. Sankai Y (2010) HAL: hybrid assistive limb based on cybernics. In: Kaneko One thousand, Nakamura Y (eds) Robotics research. Springer, Heidelberg, pp 25–34

    Chapter  Google Scholar

  11. Wang 50, Wang S, van Asseldonk EH, van der Kooij H (2013) Actively controlled lateral gait assist in a lower limb exoskeleton. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 965–970. IEEE

  12. Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE (2011) Design and evaluation of Mina: a robotic orthosis for paraplegics. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–viii. IEEE

  13. Nakamura T, Saito Chiliad, Kosuge Chiliad (2005) Control of clothing walking back up system based on human being-model and GRF. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4394–4399. IEEE

  14. Esquenazi A, Talaty Chiliad, Packel A, Saulino Yard (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921

    Article  Google Scholar

  15. Sanz-Merodio D, Cestari Grand, Arevalo JC, Carrillo XA, Garcia E (2014) Generation and control of adaptive gaits in lower-limb exoskeletons for move assistance. Adv Robot 28(five):329–338

    Article  Google Scholar

  16. Strausser KA, Kazerooni H (2011) The development and testing of a human machine interface for a mobile medical exoskeleton. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 4911–4916. IEEE

  17. Colombo G, Joerg Thousand, Schreier R, Dietz 5 (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37(6):693–700

    Google Scholar

  18. Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386

    Commodity  Google Scholar

  19. Setting the scene. http://world wide web.unfpa.org/webdav/site/global/shared/documents/publications/2012/UNFPA-Report-Chapter1.pdf

  20. del Carmen Sanchez-Villamañan Yard, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL (2019) Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J Neuroeng Rehabil 16(i):55

    Article  Google Scholar

  21. Lee H, Ferguson PW, Rosen J (2020) Lower limb exoskeleton systems—overview. In: Rosen J, Ferguson PW (eds) Wearable robotics. Academic Printing, Elsevier, pp 207–229

  22. Subramaniyam M, Kumar One thousand, Shanmugam D, Kim DJ, Lee KS, Park SJ, Min SN (2019) Assistive technologies for elderly—review on recent developments in lower limb and back pain management. In: 2019 International conference on applied human factors and ergonomics, pp 824–830. Springer, Cham

  23. Shi D, Zhang W, Zhang W, Ding X (2019) A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng 32(one):74

    Article  Google Scholar

  24. Grabke EP, Masani K, Andrysek J (2019) Lower limb assistive device design optimization using musculoskeletal modeling: a review. J Med Devices thirteen(4):040801

    Article  Google Scholar

  25. Ghaddar R, Mohammad MA (2019) A review of lower limb exoskeleton assistive devices for sit-to-stand and gait move. Int J Curr Eng Technol ix(i):105–111

    Google Scholar

  26. Rose J, Gamble JG (1994) Human being walking, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar

  27. Yan T, Cempini M, Oddo CM, Vitiello N (2015) Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst 64:120–136

    Commodity  Google Scholar

  28. Kazerooni H, Racine JL, Huang L, Steger R (2005) On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4353–4360. IEEE

  29. Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron xi(2):128–138

    Article  Google Scholar

  30. Marcheschi Due south, Salsedo F, Fontana 1000, Bergamasco M (2011) Trunk extender: whole body exoskeleton for human power augmentation. In: 2011 IEEE international conference on robotics and automation, pp 611–616. IEEE

  31. Yang Z, Zhu Y, Yang X, Zhang Y (2009) Impedance control of exoskeleton suit based on adaptive RBF neural network. In: 2009 International conference on intelligent homo-machine systems and cybernetics, pp 182–187. IEEE

  32. Yamamoto K, Hyodo K, Ishii M, Matsuo T (2002) Development of power assisting arrange for assisting nurse labor. JSME Int J C-Mech Syst 45(iii):703–711

    Commodity  Google Scholar

  33. Yamamoto K, Ishii M, Noborisaka H, Hyodo One thousand (2004) Stand alone wearable power assisting suit-sensing and command systems. In RO-Man 2004. 13th IEEE international workshop on robot and human interactive communication (IEEE Catalog No. 04TH8759), pp 661–666. IEEE

  34. Walsh CJ, Pasch K, Herr H (2006) An autonomous, underactuated exoskeleton for load-carrying augmentation. In: 2006 IEEE/RSJ international briefing on intelligent robots and systems, pp 1410–1415. IEEE

  35. Ahmed AIA, Cheng H, Lin X, Omer G, Atieno JM (2016) Variable admittance command for climbing stairs in human-powered exoskeleton systems. Adv Robot Autom v(157):2

    Google Scholar

  36. Ouyang X, Ding S, Fan B, Li PY, Yang H (2016) Evolution of a novel compact hydraulic power unit of measurement for the exoskeleton robot. Mechatronics 38:68–75

    Article  Google Scholar

  37. Ding S, Ouyang Ten, Liu T, Li Z, Yang H (2018) Gait event detection of a lower extremity exoskeleton robot by an intelligent IMU. IEEE Sens J 18(23):9728–9735

    Article  Google Scholar

  38. Sanz-Merodio D, Cestari Thou, Arevalo JC, Garcia E (2012) Control motion approach of a lower limb orthosis to reduce free energy consumption. Int J Adv Robot Syst 9(six):232

    Article  Google Scholar

  39. Kwa HK, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD (2009) Development of the IHMC mobility assist exoskeleton. In: 2009 IEEE international conference on robotics and automation, pp 2556–2562. IEEE

  40. Sylos-Labini F, La Scaleia Five, d'Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari K, Wang S, Wang L, van Asseldonk E, Van Der Kooij H (2014) EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci 8:423

    Article  Google Scholar

  41. Long Y, Du Z, Chen C, Wang W, He Fifty, Mao 10, Xu Chiliad, Zhao 1000, Li X, Dong W (2017) Evolution and assay of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng fourteen(2):272–283

    Article  Google Scholar

  42. Chen CF, Du ZJ, He L, Shi YJ, Wang JQ, Xu GQ, Zhang Y, Wu DM, Dong W (2019) Development and hybrid control of an electrically actuated lower limb exoskeleton for motion assistance. IEEE Admission 7:169107–169122

    Article  Google Scholar

  43. Chen B, Zhong CH, Zhao X, Ma H, Guan X, Li X, Liang FY, Cheng JCY, Qin L, Law SW, Liao WH (2017) A wearable exoskeleton suit for motility assistance to paralysed patients. J Orthop Transl eleven:vii–18

    Google Scholar

  44. Zhu A, He S, He D, Liu Y (2016) Conceptual design of customized lower limb exoskeleton rehabilitation robot based on evident design. Procedia CIRP 53:219–224

    Article  Google Scholar

  45. Jin X, Zhu S, Zhu X, Chen Q, Zhang X (2017) Single-input adaptive fuzzy sliding manner command of the lower extremity exoskeleton based on human being–robot interaction. Adv Mech Eng 9(2):1687814016686665

    Article  Google Scholar

  46. Hyon SH, Morimoto J, Matsubara T, Noda T, Kawato M (2011) XoR: hybrid drive exoskeleton robot that tin residual. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 3975–3981. IEEE

  47. Matsubara T, Uchikata A, Morimoto J (2012) Full-body exoskeleton robot control for walking assistance past style-phase adaptive blueprint generation. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 3914–3920. IEEE

  48. Bayon C, Ramírez O, Serrano JI, Del Castillo MD, Pérez-Somarriba A, Belda-Lois JM, Martínez-Caballero I, Lerma-Lara S, Cifuentes C, Frizera A, Rocon E (2017) Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robot Auton Syst 91:101–114

    Article  Google Scholar

  49. Bayón C, Martín-Lorenzo T, Moral-Saiz B, Ramírez Ó, Pérez-Somarriba Á, Lerma-Lara S, Martínez I, Rocon E (2018) A robot-based gait grooming therapy for pediatric population with cognitive palsy: goal setting, proposal and preliminary clinical implementation. J Neuroeng Rehabil 15(one):69

    Article  Google Scholar

  50. Aycardi LF, Cifuentes CA, Múnera M, Bayón C, Ramírez O, Lerma S, Frizera A, Rocon Eastward (2019) Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three unlike levels of gait assistance using the CPWalker. J Neuroeng Rehabil sixteen(1):xv

    Commodity  Google Scholar

  51. Mohan S, Mohanta JK, Kurtenbach S, Paris J, Corves B, Huesing One thousand (2017) Design, development and command of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mech Mach Theory 112:272–294

    Article  Google Scholar

  52. Vasanthakumar M, Vinod B, Mohanta JK, Mohan South (2019) Design and robust move command of a planar 1P-2P RP hybrid manipulator for lower limb rehabilitation applications. J Intell Robot Syst 96(1):17–30

    Article  Google Scholar

  53. Baser O, Kizilhan H, Kilic E (2016) Mechanical design of a biomimetic compliant lower limb exoskeleton (BioComEx). In: 2016 International conference on autonomous robot systems and competitions (ICARSC), pp 60–65. IEEE

  54. Baser O, Kizilhan H, Kilic Eastward (2019) Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation. J Braz Soc Mech Sci Eng 41(5):226

    Article  Google Scholar

  55. Sasaki D, Noritsugu T, Takaiwa Yard (2013) Evolution of pneumatic lower limb ability assist article of clothing driven with wearable air supply arrangement. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 4440–4445. IEEE

  56. Asbeck AT, Dyer RJ, Larusson AF, Walsh CJ (2013) Biologically-inspired soft exosuit. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp i–eight. IEEE

  57. Nakamura T, Saito G, Wang Z, Kosuge M (2005) Realizing model-based wearable antigravity muscles back up with dynamics terms. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, pp 2694–2699. IEEE

  58. Chen F, Yu Y, Ge Y, Sun J, Deng X (2007) WPAL for enhancing human forcefulness and endurance during walking. In: 2007 International conference on information acquisition, pp 487–491. IEEE

  59. He H, Kiguchi Thou (2007) A written report on EMG-based control of exoskeleton robots for man lower-limb move aid. In: 2007 sixth International special topic conference on it applications in biomedicine, pp 292–295. IEEE

  60. Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL (2015) The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil 12(1):54

    Commodity  Google Scholar

  61. Wu J, Gao J, Song R, Li R, Li Y, Jiang L (2016) The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics 33:13–22

    Article  Google Scholar

  62. Sánchez-Manchola M, Gómez-Vargas D, Casas-Bocanegra D, Múnera M, Cifuentes CA (2018) Evolution of a robotic lower-limb exoskeleton for gait rehabilitation: AGoRA exoskeleton. In: 2018 IEEE ANDESCON, pp 1–half-dozen. IEEE

  63. Zhang Ten, Hashimoto Chiliad (2011) Synchronization based control for walking help suit-evaluation on synchronization and help effect. In: Cardinal applied science materials, vol 464, pp 115–118. Trans Tech Publications

  64. Zhang X, Hashimoto M (2012) Synchronization-based trajectory generation method for a robotic suit using neural oscillators for hip joint back up in walking. Mechatronics 22(1):33–44

    Article  Google Scholar

  65. Talaty Grand, Esquenazi A, Briceno JE (2013) Differentiating ability in users of the ReWalkTM powered exoskeleton: an analysis of walking kinematics. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–v. IEEE

  66. Aphiratsakun N, Parnichkun 1000 (2009) Balancing control of AIT leg exoskeleton using ZMP based FLC. Int J Adv Robot Syst vi(iv):34

    Article  Google Scholar

  67. Tagliamonte NL, Sergi F, Carpino Thou, Accoto D, Guglielmelli E (2013) Man-robot interaction tests on a novel robot for gait assistance. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–6. IEEE

  68. Kong K, Jeon D (2006) Pattern and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans Mechatron 11(4):428–432

    Article  Google Scholar

  69. Quintero H, Farris R, Hartigan C, Clesson I, Goldfarb 1000 (2011) A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal String Injury Rehabil 17(1):25–33

    Article  Google Scholar

  70. Farris RJ, Quintero HA, Goldfarb 1000 (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng xix(6):652–659

    Article  Google Scholar

  71. Wu CH, Mao HF, Hu JS, Wang TY, Tsai YJ, Hsu WL (2018) The furnishings of gait preparation using powered lower limb exoskeleton robot on individuals with complete spinal string injury. J Neuroeng Rehabil 15(one):14

    Article  Google Scholar

  72. Mori Y, Okada J, Takayama M (2006) Development of a continuing mode transfer system "ABLE" for disabled lower limbs. IEEE/ASME Trans Mechatron 11(4):372–380

    Article  Google Scholar

  73. Belforte G, Gastaldi L, Sorli Grand (2001) Pneumatic active gait orthosis. Mechatronics 11(iii):301–323

    Commodity  Google Scholar

  74. Yeh TJ, Wu MJ, Lu TJ, Wu FK, Huang CR (2010) Control of McKibben pneumatic muscles for a ability-help, lower-limb orthosis. Mechatronics twenty(6):686–697

    Article  Google Scholar

  75. Sawicki GS, Ferris DP (2009) A pneumatically powered knee-talocrural joint-human foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil 6(1):23

    Article  Google Scholar

  76. Kao PC, Lewis CL, Ferris DP (2010) Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech 43(two):203–209

    Article  Google Scholar

  77. Kao PC, Lewis CL, Ferris DP (2010) Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J Biomech 43(7):1401–1407

    Article  Google Scholar

  78. Chen Thousand, Qi P, Guo Z, Yu H (2016) Mechanical pattern and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation. Mech Mach Theory 103:51–64

    Commodity  Google Scholar

  79. Winter DA (2009) Biomechanics and motor command of man movement. Wiley, Hoboken

    Book  Google Scholar

  80. Lenzi T, Carrozza MC, Agrawal SK (2013) Powered hip exoskeletons tin can reduce the user'southward hip and ankle muscle activations during walking. IEEE Trans Neural Syst Rehabil Eng 21(6):938–948

    Article  Google Scholar

  81. Ronsse R, Koopman B, Vitiello N, Lenzi T, De Rossi, SMM, Van Den Kieboom J, Van Asseldonk E, Carrozza MC, Van Der Kooij H, Ijspeert AJ (2011) Oscillator-based walking assistance: a model-free arroyo. In 2011 IEEE international conference on rehabilitation robotics, pp one–six. IEEE

  82. Aguirre-Ollinger M (2013) Learning muscle activation patterns via nonlinear oscillators: application to lower-limb help. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 1182–1189. IEEE

  83. Yu Y, Liang W, Ge Y (2011) Jacobian analysis for parallel mechanism using on human being walking power profitable. In: 2011 IEEE international conference on mechatronics and automation, pp 282–288. IEEE

  84. Exercise Nascimento BG, Vimieiro CBS, Nagem DAP, Pinotti M (2008) Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical bespeak. Artif Organs 32(iv):317–322

    Article  Google Scholar

  85. Lewis CL, Ferris DP (2011) Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech 44(five):789–793

    Article  Google Scholar

  86. d'Elia N, Vanetti F, Cempini Thousand, Pasquini Yard, Parri A, Rabuffetti G, Ferrarin Grand, Lova RM, Vitiello N (2017) Physical homo-robot interaction of an agile pelvis orthosis: toward ergonomic cess of habiliment robots. J Neuroeng Rehabil 14(1):29

    Article  Google Scholar

  87. Guzmán CH, Blanco A, Brizuela JA, Gómez FA (2017) Robust command of a hip–joint rehabilitation robot. Biomed Point Process 35:100–109

    Article  Google Scholar

  88. Junius K, Lefeber N, Swinnen East, Vanderborght B, Lefeber D (2017) Metabolic effects induced past a kinematically uniform hip exoskeleton during STS. IEEE Trans Biomed Eng 65(half dozen):1399–1409

    Article  Google Scholar

  89. Junius Chiliad, Degelaen M, Lefeber North, Swinnen E, Vanderborght B, Lefeber D (2017) Bilateral, misalignment-compensating, total-DOF hip exoskeleton: design and kinematic validation. Appl Bionics Biomech 2017(5):1–14

    Article  Google Scholar

  90. Chen B, Grazi L, Lanotte F, Vitiello North, Crea S (2018) A real-fourth dimension lift detection strategy for a hip exoskeleton. Forepart Neurorobot 12:17

    Article  Google Scholar

  91. Chen B, Lanotte F, Grazi 50, Vitiello North, Crea South (2019) Classification of lifting techniques for application of a robotic hip exoskeleton. Sensors. 19(four):963

    Commodity  Google Scholar

  92. Lai WY, Ma H, Liao WH, Fong DTP, Chan KM (2013) HIP-KNEE command for gait assistance with powered knee joint orthosis. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO), pp 762–767. IEEE

  93. Pratt JE, Krupp BT, Morse CJ, Collins SH (2004) The RoboKnee: an exoskeleton for enhancing force and endurance during walking. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA'04, vol 3, pp 2430–2435. IEEE

  94. Fleischer C, Hommel G (2008) A human–exoskeleton interface utilizing electromyography. IEEE Trans Robot 24(4):872–882

    Article  Google Scholar

  95. Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A (2012) Inertia compensation command of a one-degree-of-freedom exoskeleton for lower-limb help: initial experiments. IEEE Trans Neural Syst Rehabil Eng 20(i):68–77

    Article  Google Scholar

  96. Gams A, Petrič T, Debevec T, Babič J (2013) Effects of robotic human knee exoskeleton on human being free energy expenditure. IEEE Trans Biomed Eng sixty(6):1636–1644

    Article  Google Scholar

  97. Arazpour M, Chitsazan A, Bani MA, Rouhi G, Ghomshe FT, Hutchins SW (2013) The effect of a knee talocrural joint pes orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis. Prosthet Orthot Int 37(5):411–414

    Commodity  Google Scholar

  98. Kim 1000, Yu CH, Jeong GY, Heo M, Kwon TK (2013) Analysis of the assistance characteristics for the knee extension move of articulatio genus orthosis using muscular stiffness strength feedback. J Mech Sci Technol 27(x):3161–3169

    Article  Google Scholar

  99. Karavas N, Ajoudani A, Tsagarakis Due north, Saglia J, Bicchi A, Caldwell D (2013) Tele-impedance based stiffness and movement augmentation for a knee exoskeleton device. In: 2013 IEEE international conference on robotics and automation, pp 2194–2200. IEEE

  100. Spring AN, Kofman J, Lemaire ED (2012) Design and evaluation of an orthotic knee-extension help. IEEE Trans Neural Syst Rehabil Eng 20(5):678–687

    Commodity  Google Scholar

  101. Dollar AM, Herr H (2008) Design of a quasi-passive knee exoskeleton to assist running. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 747–754. IEEE

  102. Madani T, Daachi B, Djouani K (2016) Not-singular final sliding mode controller: application to an actuated exoskeleton. Mechatronics 33:136–145

    Article  Google Scholar

  103. Sherwani KI, Kumar N, Chemori A, Khan M, Mohammed South (2020) Rise-based adaptive command for EICoSI exoskeleton to help knee joint joint mobility. Robot Auton Syst 124:103354

    Article  Google Scholar

  104. Norris JA, Granata KP, Mitros MR, Byrne EM, Marsh AP (2007) Outcome of augmented plantarflexion power on preferred walking speed and economy in immature and older adults. Gait Posture 25(iv):620–627

    Article  Google Scholar

  105. Polinkovsky A, Bachmann RJ, Kern NI, Quinn, RD (2012) An ankle foot orthosis with insertion signal eccentricity command. In: 2012 IEEE/RSJ international briefing on intelligent robots and systems, pp 1603–1608. IEEE

  106. Takemura H, Onodera T, Ming D, Mizoguchi H (2012) Design and control of a wearable stewart platform-type ankle-foot assistive device. Int J Adv Robot Syst nine(5):202

    Commodity  Google Scholar

  107. Leclair J, Pardoel S, Helal A, Doumit Thousand (2020) Evolution of an unpowered ankle exoskeleton for walking assist. Disabil Rehabil Assist Technol 15(i):1–13

    Article  Google Scholar

  108. Kim M, Kim JJ, Kang SR, Jeong, GY, Kwon TK (2010) Assay of the aid characteristics for the plantarflexion torque in elderly adults wearing the powered ankle exoskeleton. In: International conference on control automation and systems (ICCAS 2010), pp 576–579. IEEE

  109. Blaya JA, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-human foot gait. IEEE Trans Neural Syst Rehabil Eng 12(i):24–31

    Commodity  Google Scholar

  110. Malcolm P, Derave W, Galle Southward, De Clercq D (2013) A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human being walking. PLoS ONE 8(2):e56137

    Commodity  Google Scholar

  111. Malcolm P, Fiers P, Segers V, Van Caekenberghe I, Lenoir Thousand, De Clercq D (2009) Experimental study on the role of the ankle push off in the walk-to-run transition past ways of a powered talocrural joint-foot-exoskeleton. Gait Posture 30(three):322–327

    Article  Google Scholar

  112. Erdogan A, Celebi B, Satici Ac, Patoglu V (2017) Assist On-Ankle: a reconfigurable ankle exoskeleton with series-elastic actuation. Auton Robots 41(3):743–758

    Article  Google Scholar

  113. Mohammed S, Amirat Y, Rifai H (2012) Lower-limb movement help through article of clothing robots: state of the art and challenges. Adv Robot 26(i–ii):1–22

    Article  Google Scholar

  114. Mosher RS, S.o.A. Engineers (1967) Handyman to hardiman: guild of automotive engineers. Popular Sci

  115. Gilbert KE, Callan PC (1968) Hardiman I paradigm. General Electric Visitor, Schenectady, NY. GE Technical Written report Due south-68-1081

  116. Vukobratovic Thousand, Hristic D, Stojiljkovic Z (1974) Development of agile anthropomorphic exoskeletons. Med Biol Eng 12(i):66–fourscore

    Commodity  Google Scholar

  117. Morimoto J, Noda T, Hyon SH (2012) Extraction of latent kinematic relationships betwixt human users and assistive robots. In: 2012 IEEE international conference on robotics and automation, pp 3909–3915. IEEE

  118. Saito Y, Kikuchi K, Negoto H, Oshima T, Haneyoshi T (2005) Development of externally powered lower limb orthosis with bilateral-servo actuator. In: ninth International briefing on rehabilitation robotics, 2005. ICORR 2005, pp 394–399. IEEE

  119. Suzuki K, Mito Thousand, Kawamoto H, Hasegawa Y, Sankai Y (2007) Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv Robot 21(12):1441–1469

    Article  Google Scholar

  120. Pratt GA, Williamson MM (1995) Serial elastic actuators. In: Proceedings 1995 IEEE/RSJ international conference on intelligent robots and systems. Human being robot interaction and cooperative robots, vol 1, pp 399–406. IEEE

  121. Ikehara T (2010) Development of a closed-fitting-type walking aid device on leg with a self-contained control system. J Robot Mechatron 22(3):380

    Article  Google Scholar

  122. Ikehara T, Nagamura K, Ushida T, Tanaka E, Saegusa S, Kojima S, Yuge 50 (2011) Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity. In: 2011 IEEE international conference on rehabilitation robotics, pp i–7. IEEE

  123. Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi 1000, Sankai Y (2010) Voluntary motion support control of Robot Adapt HAL triggered by bioelectrical point for hemiplegia. In: 2010 Annual international briefing of the IEEE engineering in medicine and biological science, pp 462–466. IEEE

  124. Chen F, Yu Y, Ge Y, Fang Y (2009) WPAL for homo power assist during walking using dynamic equation. In: 2009 International conference on mechatronics and automation, pp 1039–1043. IEEE

  125. Righetti Fifty, Buchli J, Ijspeert AJ (2006) Dynamic hebbian learning in adaptive frequency oscillators. Physica D 216(2):269–281

    MathSciNet  MATH  Commodity  Google Scholar

  126. Ronsse R, Lenzi T, Vitiello N, Koopman B, Van Asseldonk E, De Rossi SMM, Van Den Kieboom J, Van Der Kooij H, Carrozza MC, Ijspeert AJ (2011) Oscillator-based assistance of cyclical movements: model-based and model-gratis approaches. Med Biol Eng Comput 49(x):1173

    Article  Google Scholar

  127. Passino KM, Yurkovich S (1998) Fuzzy control, vol 42. Addison-Wesley, Boston

    MATH  Google Scholar

  128. Narayan J, Singla E, Soni South, Singla A (2018) Adaptive neuro-fuzzy inference organisation–based path planning of 5-degrees-of-freedom spatial manipulator for medical applications. Proc Inst Mech Eng H 232(seven):726–732

    Article  Google Scholar

  129. Ross TJ (2009) Fuzzy logic with engineering applications. Wiley, Hoboken

    Google Scholar

  130. Kazerooni H, Steger R, Huang 50 (2006) Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int J Robot Res 25(five–half dozen):561–573

    Article  Google Scholar

  131. Grazi L, Crea Southward, Parri A, Molino Lova R, Micera S, Vitiello North (2018) Gastrocnemius myoelectric control of a robotic hip exoskeleton tin can reduce the user's lower-limb musculus activities at push off. Front Neurosci 12:71

    Article  Google Scholar

  132. Immature AJ, Gannon H, Ferris DP (2017) A biomechanical comparison of proportional electromyography control to biological torque control using a powered hip exoskeleton. Front end Bioeng Biotechnol 5:37

    Article  Google Scholar

  133. Kalita B, Dwivedy SK (2018) Dynamic analysis of a parametrically excited aureate Muga silk embedded pneumatic bogus muscle. In: 14th International conference on vibration engineering science and engineering science of machinery (VETOMAC XIV), vol 211, p 02008. EDP Sciences

  134. Haines CS, Lima MD, Li Northward, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang Southward, de Andrade MJ, Göktepe F, Göktepe Ö (2014) Artificial muscles from fishing line and sewing thread. Science 343(6173):868–872

    Article  Google Scholar

  135. Guo H, Liao WH (2011) Optimization of a multifunctional actuator utilizing magnetorheological fluids. In: 2011 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 67–72. IEEE

  136. Ekso Bionics, An exoskeleton bionic suit or a wearable robot that helps people walk over again. http://www.eksobionics.com/

  137. King Bionics—Step into the Future. http://www.rexbionics.com/

  138. Indego—Powering People Frontward, Parker Indego. http://world wide web.indego.com/indego/en/home

  139. Gurriet T, Finet S, Boeris G, Duburcq A, Hereid A, Harib O, Masselin Chiliad, Grizzle J, Ames Advertisement (2018) Towards restoring locomotion for paraplegics: Realizing dynamically stable walking on exoskeletons. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 2804–2811. IEEE

  140. ExoAtlet. https://www.exoatlet.com/en/node/84

  141. Honda Walking Assist Device, Honda. https://global.honda/products/power/walkingassist.html

  142. BELK—Knee Exoskeleton, GOGOA. http://gogoa.eu/products/robotic-neuro-rehabilitation/belk/

  143. Keeogo—Articulatio genus exoskeleton. https://keeogo.com/

  144. C-Caryatid—Reshaping the future, Ottobock U.s.a.. https://world wide web.ottobockus.com/orthotics/solution-overview/c-brace/

Download references

Author information

Affiliations

Corresponding author

Correspondence to Bhaben Kalita.

Ideals declarations

Disharmonize of interest

The authors declare that there is no disharmonize of interest.

Boosted information

Publisher'southward Annotation

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this commodity

Verify currency and authenticity via CrossMark

Cite this article

Kalita, B., Narayan, J. & Dwivedy, S.K. Evolution of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review. Int J of Soc Robotics 13, 775–793 (2021). https://doi.org/ten.1007/s12369-020-00662-ix

Download citation

  • Accepted:

  • Published:

  • Consequence Date:

  • DOI : https://doi.org/10.1007/s12369-020-00662-9

Keywords

  • Robotic devices
  • Rehabilitation
  • Lower limb
  • Articulation types
  • Actuation modes
  • Control strategies

pereathearted.blogspot.com

Source: https://link.springer.com/article/10.1007/s12369-020-00662-9

0 Response to "Stateoftheart and Future Directions for Robotic Lower Limb Exoskeletons"

Enviar um comentário

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel