Stateoftheart and Future Directions for Robotic Lower Limb Exoskeletons
Abstract
The bones routine movements for elderly people are not easily accessible due to the weak muscles and impaired nerves in their lower extremity. In the last few years, many robotic-based rehabilitation devices, similar orthosis and exoskeletons, have been designed and adult past researchers to provide locomotion assistance to support gait behavior and to perform daily activities for elderly people. Withal, there is still a need for improvement in the design, actuation and control of these devices for making them cost-effective in the worldwide market. In this work, a systematic review is presented on available lower limb orthosis and exoskeleton devices, to appointment. The devices are broadly reviewed co-ordinate to joint types, actuation modes and command strategies. Furthermore, tabular comparisons have also been presented with the types and applications of these devices. Finally, the needful improvements for realizing the efficacy of lower limb rehabilitation devices are discussed forth with the evolution stage. This review will help the designers and researchers to develop an efficient robotic device for the rehabilitation of the lower limb.
References
-
World report on inability. https://www.who.int/disabilities/world_report/2011/written report/en/
-
Kapsalyamov A, Jamwal PK, Hussain S, Ghayesh MH (2019) State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access 7:95075–95086
-
Herr H (2009) Exoskeletons and orthoses: classification. Design challenges and futurity. J Neuroeng Rehabil half-dozen:21
-
Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-fine art. IEEE Trans Robot 24(ane):144–158
-
Herr H (2009) Exoskeletons and orthoses: nomenclature, design challenges and future directions. J Neuroeng Rehabil 6(one):21
-
Pons JL (2010) Rehabilitation exoskeletal robotics. IEEE Eng Med Biol Magazine 29(three):57–63
-
Kazerooni H, Steger R (2006) The Berkeley lower extremity exoskeleton. J Dyn Syst Meas Contr 128(1):xiv–25
-
Guizzo E, Goldstein H (2005) The rise of the body bots [robotic exoskeletons]. IEEE Spectr 42(10):50–56
-
Walsh CJ, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Humanoid Robot 4(03):487–506
-
Sankai Y (2010) HAL: hybrid assistive limb based on cybernics. In: Kaneko One thousand, Nakamura Y (eds) Robotics research. Springer, Heidelberg, pp 25–34
-
Wang 50, Wang S, van Asseldonk EH, van der Kooij H (2013) Actively controlled lateral gait assist in a lower limb exoskeleton. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 965–970. IEEE
-
Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE (2011) Design and evaluation of Mina: a robotic orthosis for paraplegics. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–viii. IEEE
-
Nakamura T, Saito Chiliad, Kosuge Chiliad (2005) Control of clothing walking back up system based on human being-model and GRF. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4394–4399. IEEE
-
Esquenazi A, Talaty Chiliad, Packel A, Saulino Yard (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921
-
Sanz-Merodio D, Cestari Grand, Arevalo JC, Carrillo XA, Garcia E (2014) Generation and control of adaptive gaits in lower-limb exoskeletons for move assistance. Adv Robot 28(five):329–338
-
Strausser KA, Kazerooni H (2011) The development and testing of a human machine interface for a mobile medical exoskeleton. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 4911–4916. IEEE
-
Colombo G, Joerg Thousand, Schreier R, Dietz 5 (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37(6):693–700
-
Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386
-
Setting the scene. http://world wide web.unfpa.org/webdav/site/global/shared/documents/publications/2012/UNFPA-Report-Chapter1.pdf
-
del Carmen Sanchez-Villamañan Yard, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL (2019) Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J Neuroeng Rehabil 16(i):55
-
Lee H, Ferguson PW, Rosen J (2020) Lower limb exoskeleton systems—overview. In: Rosen J, Ferguson PW (eds) Wearable robotics. Academic Printing, Elsevier, pp 207–229
-
Subramaniyam M, Kumar One thousand, Shanmugam D, Kim DJ, Lee KS, Park SJ, Min SN (2019) Assistive technologies for elderly—review on recent developments in lower limb and back pain management. In: 2019 International conference on applied human factors and ergonomics, pp 824–830. Springer, Cham
-
Shi D, Zhang W, Zhang W, Ding X (2019) A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng 32(one):74
-
Grabke EP, Masani K, Andrysek J (2019) Lower limb assistive device design optimization using musculoskeletal modeling: a review. J Med Devices thirteen(4):040801
-
Ghaddar R, Mohammad MA (2019) A review of lower limb exoskeleton assistive devices for sit-to-stand and gait move. Int J Curr Eng Technol ix(i):105–111
-
Rose J, Gamble JG (1994) Human being walking, 2nd edn. Williams and Wilkins, Baltimore
-
Yan T, Cempini M, Oddo CM, Vitiello N (2015) Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst 64:120–136
-
Kazerooni H, Racine JL, Huang L, Steger R (2005) On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4353–4360. IEEE
-
Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron xi(2):128–138
-
Marcheschi Due south, Salsedo F, Fontana 1000, Bergamasco M (2011) Trunk extender: whole body exoskeleton for human power augmentation. In: 2011 IEEE international conference on robotics and automation, pp 611–616. IEEE
-
Yang Z, Zhu Y, Yang X, Zhang Y (2009) Impedance control of exoskeleton suit based on adaptive RBF neural network. In: 2009 International conference on intelligent homo-machine systems and cybernetics, pp 182–187. IEEE
-
Yamamoto K, Hyodo K, Ishii M, Matsuo T (2002) Development of power assisting arrange for assisting nurse labor. JSME Int J C-Mech Syst 45(iii):703–711
-
Yamamoto K, Ishii M, Noborisaka H, Hyodo One thousand (2004) Stand alone wearable power assisting suit-sensing and command systems. In RO-Man 2004. 13th IEEE international workshop on robot and human interactive communication (IEEE Catalog No. 04TH8759), pp 661–666. IEEE
-
Walsh CJ, Pasch K, Herr H (2006) An autonomous, underactuated exoskeleton for load-carrying augmentation. In: 2006 IEEE/RSJ international briefing on intelligent robots and systems, pp 1410–1415. IEEE
-
Ahmed AIA, Cheng H, Lin X, Omer G, Atieno JM (2016) Variable admittance command for climbing stairs in human-powered exoskeleton systems. Adv Robot Autom v(157):2
-
Ouyang X, Ding S, Fan B, Li PY, Yang H (2016) Evolution of a novel compact hydraulic power unit of measurement for the exoskeleton robot. Mechatronics 38:68–75
-
Ding S, Ouyang Ten, Liu T, Li Z, Yang H (2018) Gait event detection of a lower extremity exoskeleton robot by an intelligent IMU. IEEE Sens J 18(23):9728–9735
-
Sanz-Merodio D, Cestari Thou, Arevalo JC, Garcia E (2012) Control motion approach of a lower limb orthosis to reduce free energy consumption. Int J Adv Robot Syst 9(six):232
-
Kwa HK, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD (2009) Development of the IHMC mobility assist exoskeleton. In: 2009 IEEE international conference on robotics and automation, pp 2556–2562. IEEE
-
Sylos-Labini F, La Scaleia Five, d'Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari K, Wang S, Wang L, van Asseldonk E, Van Der Kooij H (2014) EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci 8:423
-
Long Y, Du Z, Chen C, Wang W, He Fifty, Mao 10, Xu Chiliad, Zhao 1000, Li X, Dong W (2017) Evolution and assay of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng fourteen(2):272–283
-
Chen CF, Du ZJ, He L, Shi YJ, Wang JQ, Xu GQ, Zhang Y, Wu DM, Dong W (2019) Development and hybrid control of an electrically actuated lower limb exoskeleton for motion assistance. IEEE Admission 7:169107–169122
-
Chen B, Zhong CH, Zhao X, Ma H, Guan X, Li X, Liang FY, Cheng JCY, Qin L, Law SW, Liao WH (2017) A wearable exoskeleton suit for motility assistance to paralysed patients. J Orthop Transl eleven:vii–18
-
Zhu A, He S, He D, Liu Y (2016) Conceptual design of customized lower limb exoskeleton rehabilitation robot based on evident design. Procedia CIRP 53:219–224
-
Jin X, Zhu S, Zhu X, Chen Q, Zhang X (2017) Single-input adaptive fuzzy sliding manner command of the lower extremity exoskeleton based on human being–robot interaction. Adv Mech Eng 9(2):1687814016686665
-
Hyon SH, Morimoto J, Matsubara T, Noda T, Kawato M (2011) XoR: hybrid drive exoskeleton robot that tin residual. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 3975–3981. IEEE
-
Matsubara T, Uchikata A, Morimoto J (2012) Full-body exoskeleton robot control for walking assistance past style-phase adaptive blueprint generation. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 3914–3920. IEEE
-
Bayon C, Ramírez O, Serrano JI, Del Castillo MD, Pérez-Somarriba A, Belda-Lois JM, Martínez-Caballero I, Lerma-Lara S, Cifuentes C, Frizera A, Rocon E (2017) Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robot Auton Syst 91:101–114
-
Bayón C, Martín-Lorenzo T, Moral-Saiz B, Ramírez Ó, Pérez-Somarriba Á, Lerma-Lara S, Martínez I, Rocon E (2018) A robot-based gait grooming therapy for pediatric population with cognitive palsy: goal setting, proposal and preliminary clinical implementation. J Neuroeng Rehabil 15(one):69
-
Aycardi LF, Cifuentes CA, Múnera M, Bayón C, Ramírez O, Lerma S, Frizera A, Rocon Eastward (2019) Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three unlike levels of gait assistance using the CPWalker. J Neuroeng Rehabil sixteen(1):xv
-
Mohan S, Mohanta JK, Kurtenbach S, Paris J, Corves B, Huesing One thousand (2017) Design, development and command of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mech Mach Theory 112:272–294
-
Vasanthakumar M, Vinod B, Mohanta JK, Mohan South (2019) Design and robust move command of a planar 1P-2P RP hybrid manipulator for lower limb rehabilitation applications. J Intell Robot Syst 96(1):17–30
-
Baser O, Kizilhan H, Kilic E (2016) Mechanical design of a biomimetic compliant lower limb exoskeleton (BioComEx). In: 2016 International conference on autonomous robot systems and competitions (ICARSC), pp 60–65. IEEE
-
Baser O, Kizilhan H, Kilic Eastward (2019) Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation. J Braz Soc Mech Sci Eng 41(5):226
-
Sasaki D, Noritsugu T, Takaiwa Yard (2013) Evolution of pneumatic lower limb ability assist article of clothing driven with wearable air supply arrangement. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 4440–4445. IEEE
-
Asbeck AT, Dyer RJ, Larusson AF, Walsh CJ (2013) Biologically-inspired soft exosuit. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp i–eight. IEEE
-
Nakamura T, Saito G, Wang Z, Kosuge M (2005) Realizing model-based wearable antigravity muscles back up with dynamics terms. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, pp 2694–2699. IEEE
-
Chen F, Yu Y, Ge Y, Sun J, Deng X (2007) WPAL for enhancing human forcefulness and endurance during walking. In: 2007 International conference on information acquisition, pp 487–491. IEEE
-
He H, Kiguchi Thou (2007) A written report on EMG-based control of exoskeleton robots for man lower-limb move aid. In: 2007 sixth International special topic conference on it applications in biomedicine, pp 292–295. IEEE
-
Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL (2015) The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil 12(1):54
-
Wu J, Gao J, Song R, Li R, Li Y, Jiang L (2016) The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics 33:13–22
-
Sánchez-Manchola M, Gómez-Vargas D, Casas-Bocanegra D, Múnera M, Cifuentes CA (2018) Evolution of a robotic lower-limb exoskeleton for gait rehabilitation: AGoRA exoskeleton. In: 2018 IEEE ANDESCON, pp 1–half-dozen. IEEE
-
Zhang Ten, Hashimoto Chiliad (2011) Synchronization based control for walking help suit-evaluation on synchronization and help effect. In: Cardinal applied science materials, vol 464, pp 115–118. Trans Tech Publications
-
Zhang X, Hashimoto M (2012) Synchronization-based trajectory generation method for a robotic suit using neural oscillators for hip joint back up in walking. Mechatronics 22(1):33–44
-
Talaty Grand, Esquenazi A, Briceno JE (2013) Differentiating ability in users of the ReWalkTM powered exoskeleton: an analysis of walking kinematics. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–v. IEEE
-
Aphiratsakun N, Parnichkun 1000 (2009) Balancing control of AIT leg exoskeleton using ZMP based FLC. Int J Adv Robot Syst vi(iv):34
-
Tagliamonte NL, Sergi F, Carpino Thou, Accoto D, Guglielmelli E (2013) Man-robot interaction tests on a novel robot for gait assistance. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–6. IEEE
-
Kong K, Jeon D (2006) Pattern and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans Mechatron 11(4):428–432
-
Quintero H, Farris R, Hartigan C, Clesson I, Goldfarb 1000 (2011) A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal String Injury Rehabil 17(1):25–33
-
Farris RJ, Quintero HA, Goldfarb 1000 (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng xix(6):652–659
-
Wu CH, Mao HF, Hu JS, Wang TY, Tsai YJ, Hsu WL (2018) The furnishings of gait preparation using powered lower limb exoskeleton robot on individuals with complete spinal string injury. J Neuroeng Rehabil 15(one):14
-
Mori Y, Okada J, Takayama M (2006) Development of a continuing mode transfer system "ABLE" for disabled lower limbs. IEEE/ASME Trans Mechatron 11(4):372–380
-
Belforte G, Gastaldi L, Sorli Grand (2001) Pneumatic active gait orthosis. Mechatronics 11(iii):301–323
-
Yeh TJ, Wu MJ, Lu TJ, Wu FK, Huang CR (2010) Control of McKibben pneumatic muscles for a ability-help, lower-limb orthosis. Mechatronics twenty(6):686–697
-
Sawicki GS, Ferris DP (2009) A pneumatically powered knee-talocrural joint-human foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil 6(1):23
-
Kao PC, Lewis CL, Ferris DP (2010) Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech 43(two):203–209
-
Kao PC, Lewis CL, Ferris DP (2010) Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J Biomech 43(7):1401–1407
-
Chen Thousand, Qi P, Guo Z, Yu H (2016) Mechanical pattern and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation. Mech Mach Theory 103:51–64
-
Winter DA (2009) Biomechanics and motor command of man movement. Wiley, Hoboken
-
Lenzi T, Carrozza MC, Agrawal SK (2013) Powered hip exoskeletons tin can reduce the user'southward hip and ankle muscle activations during walking. IEEE Trans Neural Syst Rehabil Eng 21(6):938–948
-
Ronsse R, Koopman B, Vitiello N, Lenzi T, De Rossi, SMM, Van Den Kieboom J, Van Asseldonk E, Carrozza MC, Van Der Kooij H, Ijspeert AJ (2011) Oscillator-based walking assistance: a model-free arroyo. In 2011 IEEE international conference on rehabilitation robotics, pp one–six. IEEE
-
Aguirre-Ollinger M (2013) Learning muscle activation patterns via nonlinear oscillators: application to lower-limb help. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 1182–1189. IEEE
-
Yu Y, Liang W, Ge Y (2011) Jacobian analysis for parallel mechanism using on human being walking power profitable. In: 2011 IEEE international conference on mechatronics and automation, pp 282–288. IEEE
-
Exercise Nascimento BG, Vimieiro CBS, Nagem DAP, Pinotti M (2008) Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical bespeak. Artif Organs 32(iv):317–322
-
Lewis CL, Ferris DP (2011) Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech 44(five):789–793
-
d'Elia N, Vanetti F, Cempini Thousand, Pasquini Yard, Parri A, Rabuffetti G, Ferrarin Grand, Lova RM, Vitiello N (2017) Physical homo-robot interaction of an agile pelvis orthosis: toward ergonomic cess of habiliment robots. J Neuroeng Rehabil 14(1):29
-
Guzmán CH, Blanco A, Brizuela JA, Gómez FA (2017) Robust command of a hip–joint rehabilitation robot. Biomed Point Process 35:100–109
-
Junius K, Lefeber N, Swinnen East, Vanderborght B, Lefeber D (2017) Metabolic effects induced past a kinematically uniform hip exoskeleton during STS. IEEE Trans Biomed Eng 65(half dozen):1399–1409
-
Junius Chiliad, Degelaen M, Lefeber North, Swinnen E, Vanderborght B, Lefeber D (2017) Bilateral, misalignment-compensating, total-DOF hip exoskeleton: design and kinematic validation. Appl Bionics Biomech 2017(5):1–14
-
Chen B, Grazi L, Lanotte F, Vitiello North, Crea S (2018) A real-fourth dimension lift detection strategy for a hip exoskeleton. Forepart Neurorobot 12:17
-
Chen B, Lanotte F, Grazi 50, Vitiello North, Crea South (2019) Classification of lifting techniques for application of a robotic hip exoskeleton. Sensors. 19(four):963
-
Lai WY, Ma H, Liao WH, Fong DTP, Chan KM (2013) HIP-KNEE command for gait assistance with powered knee joint orthosis. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO), pp 762–767. IEEE
-
Pratt JE, Krupp BT, Morse CJ, Collins SH (2004) The RoboKnee: an exoskeleton for enhancing force and endurance during walking. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA'04, vol 3, pp 2430–2435. IEEE
-
Fleischer C, Hommel G (2008) A human–exoskeleton interface utilizing electromyography. IEEE Trans Robot 24(4):872–882
-
Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A (2012) Inertia compensation command of a one-degree-of-freedom exoskeleton for lower-limb help: initial experiments. IEEE Trans Neural Syst Rehabil Eng 20(i):68–77
-
Gams A, Petrič T, Debevec T, Babič J (2013) Effects of robotic human knee exoskeleton on human being free energy expenditure. IEEE Trans Biomed Eng sixty(6):1636–1644
-
Arazpour M, Chitsazan A, Bani MA, Rouhi G, Ghomshe FT, Hutchins SW (2013) The effect of a knee talocrural joint pes orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis. Prosthet Orthot Int 37(5):411–414
-
Kim 1000, Yu CH, Jeong GY, Heo M, Kwon TK (2013) Analysis of the assistance characteristics for the knee extension move of articulatio genus orthosis using muscular stiffness strength feedback. J Mech Sci Technol 27(x):3161–3169
-
Karavas N, Ajoudani A, Tsagarakis Due north, Saglia J, Bicchi A, Caldwell D (2013) Tele-impedance based stiffness and movement augmentation for a knee exoskeleton device. In: 2013 IEEE international conference on robotics and automation, pp 2194–2200. IEEE
-
Spring AN, Kofman J, Lemaire ED (2012) Design and evaluation of an orthotic knee-extension help. IEEE Trans Neural Syst Rehabil Eng 20(5):678–687
-
Dollar AM, Herr H (2008) Design of a quasi-passive knee exoskeleton to assist running. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 747–754. IEEE
-
Madani T, Daachi B, Djouani K (2016) Not-singular final sliding mode controller: application to an actuated exoskeleton. Mechatronics 33:136–145
-
Sherwani KI, Kumar N, Chemori A, Khan M, Mohammed South (2020) Rise-based adaptive command for EICoSI exoskeleton to help knee joint joint mobility. Robot Auton Syst 124:103354
-
Norris JA, Granata KP, Mitros MR, Byrne EM, Marsh AP (2007) Outcome of augmented plantarflexion power on preferred walking speed and economy in immature and older adults. Gait Posture 25(iv):620–627
-
Polinkovsky A, Bachmann RJ, Kern NI, Quinn, RD (2012) An ankle foot orthosis with insertion signal eccentricity command. In: 2012 IEEE/RSJ international briefing on intelligent robots and systems, pp 1603–1608. IEEE
-
Takemura H, Onodera T, Ming D, Mizoguchi H (2012) Design and control of a wearable stewart platform-type ankle-foot assistive device. Int J Adv Robot Syst nine(5):202
-
Leclair J, Pardoel S, Helal A, Doumit Thousand (2020) Evolution of an unpowered ankle exoskeleton for walking assist. Disabil Rehabil Assist Technol 15(i):1–13
-
Kim M, Kim JJ, Kang SR, Jeong, GY, Kwon TK (2010) Assay of the aid characteristics for the plantarflexion torque in elderly adults wearing the powered ankle exoskeleton. In: International conference on control automation and systems (ICCAS 2010), pp 576–579. IEEE
-
Blaya JA, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-human foot gait. IEEE Trans Neural Syst Rehabil Eng 12(i):24–31
-
Malcolm P, Derave W, Galle Southward, De Clercq D (2013) A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human being walking. PLoS ONE 8(2):e56137
-
Malcolm P, Fiers P, Segers V, Van Caekenberghe I, Lenoir Thousand, De Clercq D (2009) Experimental study on the role of the ankle push off in the walk-to-run transition past ways of a powered talocrural joint-foot-exoskeleton. Gait Posture 30(three):322–327
-
Erdogan A, Celebi B, Satici Ac, Patoglu V (2017) Assist On-Ankle: a reconfigurable ankle exoskeleton with series-elastic actuation. Auton Robots 41(3):743–758
-
Mohammed S, Amirat Y, Rifai H (2012) Lower-limb movement help through article of clothing robots: state of the art and challenges. Adv Robot 26(i–ii):1–22
-
Mosher RS, S.o.A. Engineers (1967) Handyman to hardiman: guild of automotive engineers. Popular Sci
-
Gilbert KE, Callan PC (1968) Hardiman I paradigm. General Electric Visitor, Schenectady, NY. GE Technical Written report Due south-68-1081
-
Vukobratovic Thousand, Hristic D, Stojiljkovic Z (1974) Development of agile anthropomorphic exoskeletons. Med Biol Eng 12(i):66–fourscore
-
Morimoto J, Noda T, Hyon SH (2012) Extraction of latent kinematic relationships betwixt human users and assistive robots. In: 2012 IEEE international conference on robotics and automation, pp 3909–3915. IEEE
-
Saito Y, Kikuchi K, Negoto H, Oshima T, Haneyoshi T (2005) Development of externally powered lower limb orthosis with bilateral-servo actuator. In: ninth International briefing on rehabilitation robotics, 2005. ICORR 2005, pp 394–399. IEEE
-
Suzuki K, Mito Thousand, Kawamoto H, Hasegawa Y, Sankai Y (2007) Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv Robot 21(12):1441–1469
-
Pratt GA, Williamson MM (1995) Serial elastic actuators. In: Proceedings 1995 IEEE/RSJ international conference on intelligent robots and systems. Human being robot interaction and cooperative robots, vol 1, pp 399–406. IEEE
-
Ikehara T (2010) Development of a closed-fitting-type walking aid device on leg with a self-contained control system. J Robot Mechatron 22(3):380
-
Ikehara T, Nagamura K, Ushida T, Tanaka E, Saegusa S, Kojima S, Yuge 50 (2011) Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity. In: 2011 IEEE international conference on rehabilitation robotics, pp i–7. IEEE
-
Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi 1000, Sankai Y (2010) Voluntary motion support control of Robot Adapt HAL triggered by bioelectrical point for hemiplegia. In: 2010 Annual international briefing of the IEEE engineering in medicine and biological science, pp 462–466. IEEE
-
Chen F, Yu Y, Ge Y, Fang Y (2009) WPAL for homo power assist during walking using dynamic equation. In: 2009 International conference on mechatronics and automation, pp 1039–1043. IEEE
-
Righetti Fifty, Buchli J, Ijspeert AJ (2006) Dynamic hebbian learning in adaptive frequency oscillators. Physica D 216(2):269–281
-
Ronsse R, Lenzi T, Vitiello N, Koopman B, Van Asseldonk E, De Rossi SMM, Van Den Kieboom J, Van Der Kooij H, Carrozza MC, Ijspeert AJ (2011) Oscillator-based assistance of cyclical movements: model-based and model-gratis approaches. Med Biol Eng Comput 49(x):1173
-
Passino KM, Yurkovich S (1998) Fuzzy control, vol 42. Addison-Wesley, Boston
-
Narayan J, Singla E, Soni South, Singla A (2018) Adaptive neuro-fuzzy inference organisation–based path planning of 5-degrees-of-freedom spatial manipulator for medical applications. Proc Inst Mech Eng H 232(seven):726–732
-
Ross TJ (2009) Fuzzy logic with engineering applications. Wiley, Hoboken
-
Kazerooni H, Steger R, Huang 50 (2006) Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int J Robot Res 25(five–half dozen):561–573
-
Grazi L, Crea Southward, Parri A, Molino Lova R, Micera S, Vitiello North (2018) Gastrocnemius myoelectric control of a robotic hip exoskeleton tin can reduce the user's lower-limb musculus activities at push off. Front Neurosci 12:71
-
Immature AJ, Gannon H, Ferris DP (2017) A biomechanical comparison of proportional electromyography control to biological torque control using a powered hip exoskeleton. Front end Bioeng Biotechnol 5:37
-
Kalita B, Dwivedy SK (2018) Dynamic analysis of a parametrically excited aureate Muga silk embedded pneumatic bogus muscle. In: 14th International conference on vibration engineering science and engineering science of machinery (VETOMAC XIV), vol 211, p 02008. EDP Sciences
-
Haines CS, Lima MD, Li Northward, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang Southward, de Andrade MJ, Göktepe F, Göktepe Ö (2014) Artificial muscles from fishing line and sewing thread. Science 343(6173):868–872
-
Guo H, Liao WH (2011) Optimization of a multifunctional actuator utilizing magnetorheological fluids. In: 2011 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 67–72. IEEE
-
Ekso Bionics, An exoskeleton bionic suit or a wearable robot that helps people walk over again. http://www.eksobionics.com/
-
King Bionics—Step into the Future. http://www.rexbionics.com/
-
Indego—Powering People Frontward, Parker Indego. http://world wide web.indego.com/indego/en/home
-
Gurriet T, Finet S, Boeris G, Duburcq A, Hereid A, Harib O, Masselin Chiliad, Grizzle J, Ames Advertisement (2018) Towards restoring locomotion for paraplegics: Realizing dynamically stable walking on exoskeletons. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 2804–2811. IEEE
-
ExoAtlet. https://www.exoatlet.com/en/node/84
-
Honda Walking Assist Device, Honda. https://global.honda/products/power/walkingassist.html
-
BELK—Knee Exoskeleton, GOGOA. http://gogoa.eu/products/robotic-neuro-rehabilitation/belk/
-
Keeogo—Articulatio genus exoskeleton. https://keeogo.com/
-
C-Caryatid—Reshaping the future, Ottobock U.s.a.. https://world wide web.ottobockus.com/orthotics/solution-overview/c-brace/
Author information
Affiliations
Corresponding author
Ideals declarations
Disharmonize of interest
The authors declare that there is no disharmonize of interest.
Boosted information
Publisher'southward Annotation
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this commodity
Cite this article
Kalita, B., Narayan, J. & Dwivedy, S.K. Evolution of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review. Int J of Soc Robotics 13, 775–793 (2021). https://doi.org/ten.1007/s12369-020-00662-ix
-
Accepted:
-
Published:
-
Consequence Date:
-
DOI : https://doi.org/10.1007/s12369-020-00662-9
Keywords
- Robotic devices
- Rehabilitation
- Lower limb
- Articulation types
- Actuation modes
- Control strategies
Source: https://link.springer.com/article/10.1007/s12369-020-00662-9
0 Response to "Stateoftheart and Future Directions for Robotic Lower Limb Exoskeletons"
Enviar um comentário